گروه آموزشی اصلاح نباتات (Plant Breeding)

معرفی گروه :

دوره دكتري اصلاح نباتات بالاترين مقطع دانشگاهي در اين رشته است كه به اعطاي مدرك مي‌انجامد و به مجموعه‌اي هماهنگ از دانش‌ها و تكنيك‌هاي اين رشته طي فعاليت‌هاي تحقيقي و علمي- آموزشي منتهي مي‌گردد.
هدف از برگزاري اين دوره تربيت متخصصيني است كه با يادگيري علوم و تكنيك‌هاي مربوطه، بر آثار علمي و روش‌هاي پيشرفته تحقيق دستيابي و بر جديدترين مباني علمي و تحقيقي و نوآوري در اين زمينه ها احاطه يابند. مجموعه اين فعاليت‌هاي علمي و تحقيقاتي به پيشرفت و گسترش مرزهاي دانش در رشته اصلي اصلاح نباتات با زمينه‌هاي مهندسي ژنتيك، ژنتيك مولكولي، ژنتيك بيومتري و ژنتيك فيزيولوژيك و سيتولوژيك مي‌انجامد.
تعليم و تربيت نيروهايي كه بتوانند به تدريس و تحقيق در سطوح عالي بپردازند و در تمام زمينه‌هاي علمي و از جمله در رشته اصلاح نباتات از اهميت فوق العاده برخوردار است. امروزه در كليه رشته‌هاي دانش بشري تحقيقات گسترده‌اي انجام مي‌گيرد كه متكي به اندازه‌گيري‌هاي كمي و كيفي دقيق بوده و مستلزم استفاده از روش‌هاي علمي است. لذا ضروت تربيت افرادي كه با تسلط كافي بر علوم مربوط به آمار و احتمالات، روش‌هاي اصلاح نباتات، ژنتيك و زمينه‌هاي مربوطه به عنوان هيأت علمي نيازهاي دانشگاه‌ها كه مركز تأمين نيروي انساني متخصص براي جامعه هستند را تأمين نموده و يا در مؤسسات تحقيقاتي به ريشه يابي مسائل و گسترش مرزهاي دانش در اين رشته بپردازند، كاملاً محرز مي‌باشد.

 

Plant Breeding (PHD)

Plant breeding is the art and science of changing the traits of plants in order to produce desired characteristics. Plant breeding can be accomplished through many different techniques ranging from simply selecting plants with desirable characteristics for propagation, to more complex molecular techniques. Plant breeding has been practiced for thousands of years, since near the beginning of human civilization. It is practiced worldwide by individuals such as gardeners and farmers, or by professional plant breeders employed by organizations such as government institutions, universities, crop-specific industry associations or research centersInternational development agencies believe that breeding new crops is important for ensuring food security by developing new varieties that are higher-yielding, resistant to pests and diseases, drought-resistant or regionally adapted to different environments and growing conditions. Genetic modification of plants is achieved by adding a specific gene or genes to a plant, or by knocking down a gene with RNAi, to produce a desirable phenotype. The plants resulting from adding a gene are often referred to as transgenic plants. If for genetic modification genes of the species or of a crossable plant are used under control of their native promoter, then they are called cisgenic plants. Sometimes genetic modification can produce a plant with the desired trait or traits faster than classical breeding because the majority of the plant's genome is not altered.the gene to be added or removed will be expressed by the plant. To do this, a promoter to drive transcription and a termination sequence to stop transcription of the new gene, and the gene or genes of interest must be introduced to the plant.

 

 10

A marker for the selection of transformed plants is also included. In the laboratory, antibiotic resistance is a commonly used marker: Plants that have been successfully transformed will grow on media containing antibiotics; plants that have not been transformed will die. In some instances markers for selection are removed by backcrossing with the parent plant prior to commercial release.The construct can be inserted in the plant genome by genetic recombination using the bacteria Agro bacterium tumefactions or A. rhizogenes, or by direct methods like the gene gun or microinjection. Using plant viruses to insert genetic constructs into plants is also a possibility, but the technique is limited by the host range of the virus. For example, Cauliflower mosaic virus (CaMV) only infects cauliflower and related species. Another limitation of viral vectors is that the virus is not usually passed on the progeny, so every plant has to be inoculated.

 

 11

 

The majority of commercially released transgenic plants are currently limited to plants that have introduced resistance to insect pests and herbicides. Insect resistance is achieved through incorporation of a gene from Bacillus thuringiensis (Bt) that encodes a protein that is toxic to some insects. For example, the cotton bollworm, a common cotton pest, feeds on Bt cotton it will ingest the toxin and die. Herbicides usually work by binding to certain plant enzymes and inhibiting their action. The enzymes that the herbicide inhibits are known as the herbicides target site. Herbicide resistance can be engineered into crops by expressing a version of target site protein that is not inhibited by the herbicide. This is the method used to produce glyph sate resistant crop plants.

12

Genetic modification of plants that can produce pharmaceuticals (and industrial chemicals), that sometimes called pharming is a rather radical new area of plant breeding.